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Abstract—This paper addresses the problem of compensating
for motion-induced Doppler frequency offset in multicarrier
acoustic communication systems based on orthogonal frequency
division multiplexing (OFDM). In mobile acoustic systems,
Doppler effect can be sever enough that the received OFDM
signal experiences non-negligible frequency offsets even after
initial resampling. To target these offsets, a practical method
based on a hypothesis-testing approach is proposed. The method
relies on differentially coherent detection which keeps the receiver
complexity at a minimum and requires only a small pilot over-
head. Differential encoding is applied across carriers, promoting
the use of a large number of closely spaced carriers within a given
bandwidth. This approach simultaneously supports frequency-
domain coherence and efficient use of bandwidth for achieving
high bit rates. While frequency synchronization capitalizes on
differentially coherent detection framework, it can also be used
as a pre-processing stage in coherent receivers without creating
undue complexity. Using the experimental data transmitted over
a 3-7 km shallow water channel in the 10.5-15.5 kHz acoustic
band, we study the system performance in terms of data detection
mean squared error (MSE) and bit error rate (BER), and show
that the proposed method provides excellent performance at low
computational cost.

I. INTRODUCTION

Multicarrier modulation in the form of orthogonal fre-

quency division multiplexing (OFDM) is an attractive method

for data transmission over frequency-selective channels due

to its ability to achieve high bit rates at reasonably low

computational loads [1]–[3]. This fact motivates the use of

OFDM in mobile acoustic communications where the channel

exhibits long multipath delays but each narrowband carrier

only experiences flat fading, thus eliminating the need for time

domain equalizers.

The major problem in applying OFDM to acoustic channels

is the Doppler distortion due to relative motion between the

transmitter and receiver, which causes non-uniform frequency

shifting across the acoustic signal bandwidth. For the relative

transmitter/receiver velocity v and the propagation speed c
(nominally 1500 m/s), Doppler scaling occurs at the rate

a = v/c. In highly mobile scenarios, Doppler frequency

scaling is effectively seen as a time-varying channel distortion

which adversely affects the performance of OFDM systems

as it causes loss of orthogonality between the carriers. To

mitigate the resulting distortion, front-end resampling must be

performed [1]–[3]. Coarse resampling is typically performed

on an entire frame of OFDM blocks, and may leave individual

blocks within a frame exposed to different frequency offsets.

These offsets, if left uncompensated, can have a detrimental

impact on data detection.

In this paper, we target these frequency offsets through

a hypothesis testing approach. The approach is based on

differentially coherent detection which keeps the receiver

complexity at a minimum and requires only a very low pilot

overhead. Differential encoding is applied across carriers,

promoting the use of a large number of carriers within a

given bandwidth [1]. This approach simultaneously supports

frequency-domain coherence and efficient use of bandwidth

for achieving high bit rates. The technique is demonstrated on

experimental data from the Mobile Acoustic Communication

Experiment (MACE 2010) showing excellent results in situa-

tions with Doppler frequency offsets on the order of a carrier

spacing. In the MACE10 experiment, the transmitter moves

at a relative speed of 0.5-1.5 m/s with respect to the receiver,

and the OFDM blocks containing up to 2048 QPSK modulated

carriers occupy the acoustic frequency range between 10.5 and

15.5 kHz.

The rest of the paper is organized as follows. In Sec. II,

we introduce the signal and system model. Sec. III details the

proposed method for compensating frequency offsets. Sec. IV

contains the results of experimental data processing. Sec.V

contains the conclusions.

II. SIGNAL AND SYSTEM MODEL

We consider an OFDM system with Mr equi-spaced re-

ceivers and K carriers within a total bandwidth B. Let f0
and ∆f = B/K denote the first carrier frequency and carrier

spacing, respectively. We assume the use of zero-padding in

the transmitter along with the overlap-and-add procedure at

the receiver [4]. The transmitted OFDM block is then given

by

s(t) = Re

{

K−1
∑

k=0

dke
2πifktg(t)

}

, t ∈ [0, T + Tg] (1)

where T = 1/∆f is the OFDM symbol duration, Tg is the

zero guard interval which is assumed to be at least as long

as the multipath spread of the channel, Tg ≥ Tmp, and g(t)
describes the zero-padding operation, i.e. g(t) = 1 for t ∈
[0, T ] and 0 otherwise. The data symbols dk, which modulates

the kth carrier of frequency fk = f0+k∆f , belongs to a unit

amplitude phase shift keying alphabet (PSK).

The OFDM system transmits Nd data symbols in an OFDM

frame that includes a preamble, Nb = Nd/K OFDM blocks,

and a postamble. The synchronization preamble and postam-

ble are short signals formed from a pseudo-noise sequence

mapped to a unit-amplitude binary PSK alphabet.
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The transmitted signal passes through a multipath acoustic

channel whose impulse response can be modeled as

h(τ, t) =
∑

p

hp(t)δ(τ − τp(t)) (2)

where hp(t) and τp(t) represent the gain and delay of the pth

path, respectively. We isolate a common Doppler scaling factor

a such that τp(t) ≈ τp − at, and further assume that the path

gains are slowly varying such that hp(t) ≈ hp for the duration

of one OFDM block. With these notions, we can rewrite (2)

as

h(τ, t) ≈
∑

p

hpδ(τ − τp + at) (3)

Assuming a multi-element receiver with Mr elements, the

signal received on the mth element is given by

r̃m(t) =
∑

p

h(m)
p s((1 + a)t− τ (m)

p ) + nm(t) (4)

where the Doppler scaling factor a is assumed to be the

same for all the receiving elements, and nm(t) is the additive

noise with power spectral density (PSD) N0/2. The noise on

different receiving elements is assumed to be uncorrelated, i.e.

E{ni(t)nj(t)} = N0

2 δi,j , ∀i, j = 1, . . . ,Mr.

Frame synchronization is performed using the method pro-

posed in [1]. Front-end resampling is then applied to com-

pensate for the time compression/dilation that the received

signal experiences. To obtain a rough estimate of Doppler

scaling factor, we measure the length of the received frame

as Trx = Ttx + ∆τ where Ttx is the transmitted frame

duration and ∆τ represents the amount of time compres-

sion/dilation. Time compression/dilation is obtained as ∆τ =
argmaxτ |Rpre,post(τ)| where Rpre,post(τ) is the correlation

between the received preamble and postamble signals (its

magnitude peaks at lag zero if there is no time compres-

sion/dilation). Hence, it follows that â = Ttx/Trx−1, and the

resampled received signal is obtained as rm(t) = r̃m(t/(1 +
â)).

After frame synchronization, initial resampling and down-

shifting by the lowest carrier frequency f0, the received signal

on the mth receiving element is modeled as

vm(t) = eiβt
K−1
∑

k=0

Hm
k dke

2πik∆ft + wm(t), t ∈ [0, T ](5)

where β is the unknown frequency offset assumed common

for all Mr receiving elements, Hm
k is the channel frequency

response at the kth carrier of the mth receiving elements and

wm(t) is the additive complex Gaussian noise with PSD N0

per complex dimension. To obtain (5), we assumed that the

ratio (1+a)/(1+ â) is close to 1 and we invoked the fact that

T � Tmp for a properly designed OFDM system. Assuming

the same gross frequency offset β for all receiving elements

is plausible when the elements are co-located, and it helps to

promote the multichannel processing gain.

The model (5) captures rough frequency shifting and serves

as a starting point in developing the method for frequency off-

set compensation. The finer points of frequency shift changing

across the bandwidth are left to post-FFT processing.

III. FREQUENCY OFFSET COMPENSATION

We focus on frequency offset compensation which employs

differentially coherent detection. In this approach, several

hypothesized values of the frequency offset are used, e.g. in

steps of ∆f/10, and differential maximal ratio combining

is performed for each hypothesized value. Specifically, let

us assume that the Mr signals are compensated by some

hypothesized value β̂, and that demodulation is performed on

all the receiving elements to yield

ymk =

∫

T

vm(t)e−iβ̂te−2πik∆ftdt (6)

where k = 0, . . . ,K − 1 and m = 1, . . . ,Mr. Arranging the

signals corresponding to carrier k into a vector yk, the esti-

mates of the differentially-encoded data symbols bk = d∗k−1dk
are obtained as

b̂k =
y
H
k−1yk

y
H
k−1yk−1

, k = 0, . . . ,K − 1 (7)

where we implicitly assume that the channel frequency re-

sponse changes slowly from one carrier to the next, i.e.

Hm
k−1 ≈ Hm

k , ∀k = 1, . . . ,K − 1 and m = 1, . . . ,Mr.

Using equally-spaced pilot data symbols bk, k ∈ Kp, the

composite error is formed as

E(β̂) =
∑

k∈Kp

|bk − b̂k|
2 (8)

and the estimate β̂� is obtained as

β̂� = argmin
β̂

E(β̂) (9)

In Fig. 1, we illustrate how the method works by applying

it to an OFDM frame with 8 blocks and K = 1024 carriers

from the experimental recordings. Shown in the figure are the

last block’s composite error as a function of the hypothesized

frequency offset values β̂/2π, the estimated frequency offset

β̂�/2π obtained for the 8 blocks in the underlying frame, and

the scatter plot of the detected data symbols in the last block.

In the next section, we study the performance of the system

using the entire set of signals transmitted over several hours.

The running time of the algorithm is dominated by the

number of FFTs which is equal to the number of hypothesized

values N
β̂

. The total cost of the algorithm is O(N
β̂
K log(K)).

This cost can further be reduced by exploiting the channel

coherence. Namely, capitalizing on the fact that the channel

is not changing much from one block to the next, we can

pre-compensate the signal in the next block by the frequency

offset estimate obtained in the current block, then use a shorter

hypothesis interval. Such an approach will effectively reduce

the overall computational complexity.

IV. EXPERIMENTAL RESULT

To asses the system performance, we focus on the ex-

perimental data from the Mobile Acoustic Communication

Experiment (MACE’10) which took place off the coast of

Martha’s Vineyard, Massachusetts, in June 2010. The ex-

perimental signals, whose parameters are given in Table I,

were transmitted using the acoustic frequency range between
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Fig. 1. Performance illustration for an OFDM frame with K = 1024 carriers and 8 blocks. Shown are the composite error obtained for the last block (a),
frequency correction (b), and the last block’s scatter plot (c). Only 8 pilots are used and the hypothesized values range from −3∆f to 3∆f in steps of
∆f/10. There are no symbol decision errors in the scatter plot shown.

TABLE I
MACE’10 SIGNAL PARAMETERS. THE GUARD INTERVAL IS Tg = 16 msec. THE TOTAL BANDWIDTH IS B = 5 kHz AND THE LOWEST CARRIER

FREQUENCY IS f0 = 10.5 kHz. THE BANDWIDTH EFFICIENCY IS CALCULATED ASSUMING 8 PILOTS.

number of carriers K 64 128 256 512 1024 2048

number of blocks per frame Nb 128 64 32 16 8 4

carrier spacing ∆f [Hz] 78.1 39.1 19.5 9.8 4.9 2.4

bit rate [kbps] 4.4 6.2 7.6 8.6 9.3 9.6

bandwidth efficiency [bps/Hz] 0.76 1.14 1.4 1.7 1.84 1.92

10.5 kHz and 15.5 kHz. The receiver array of 12 equally-

spaced elements spanning a total linear aperture of 1.32 m was

suspended at the depth of 40 m, and the transmitter was towed

at the depth of 40-60 m. The water depth was approximately

100 m, and the transmission distance varied between 3 km

and 7 km. More details about the experiment can be found in

[1].

The experiment consisted of multiple repeated transmis-

sions, each containing all the OFDM signals listed in Table I.

There was a total of 52 transmissions spanning 3.5 hours of

recording. During this time, the transmitting station moved

away and towards the receiving station, at varying speeds

ranging from 0.5 m/s to 1.5 m/s. The results provided in this

section are obtained from all 52 transmissions.

We demonstrate the performance of the proposed scheme

for frequency offset compensation in terms of data detection

mean-squared error (MSE) and average execution time T̄exe

which is deemed a practical indicator of the algorithm com-

plexity. We also report on the estimated cumulative density

function (CDF) of the MSE measured in each signal frame.

Furthermore, we show the bit error rate (BER) and block error

rate (BLER) of the system using low-density parity check

(LDPC) codes with various code rates.

The MSE is measured in the n-th block of the i-th frame

as

MSEi(n,K) =
1

K − 1

K−1
∑

k=1

|bik(n)− b̂ik(n)|
2 (10)

and the MSE per frame is obtained as

MSEi(K) =
1

Nb

Nb
∑

n=1

MSEi(n,K) (11)

The average over all 52 frames is

MSE(K) =
1

52

52
∑

i=1

MSEi(K) (12)

Note that due to the random channel variation and a finite

number of measurements, each of these quantities is a random

variable.

Fig. 2 illustrates the average MSE (Fig. 2a) and the average

execution time (Fig. 2b) of the algorithm as a function of

the number of carriers K (log scale) for three situations,

each of which includes three hypothesis intervals: S1) fixed

hypothesis intervals [−3∆f, 3∆f ] with resolution factors 5,

10 and 20 for all the blocks in a frame, S2) hypothesis

intervals from the second block and on are changed to

shorter intervals [−0.5∆f, 0.5∆f ] and [−1.5∆f, 1.5∆f ] for

log2 K = 6, . . . , 10 and log2 K = 11, respectively, while the

resolution factors are the same as those in the first set, and

S3) the same hypothesis intervals as in S2 but the resolution

is increased by a factor of 6 for log2 K = 6, . . . , 10 and by

a factor of 2 for log2 K = 11. Each point in these plots is

obtained by averaging over all carriers, blocks, and 52 frames

transmitted. Fig 2a in conjunction with Fig. 2b demonstrate

the trade-off between performance and complexity. Fig 2a

clearly shows that increasing the resolution factor improves

the MSE performance. Taking the hypothesis intervals in S1

as an example, we observe that by increasing the resolution

factor from 5 to 10 for the case where log2(K) = 10,

we obtain 1.2 dB gain in the MSE performance. However,

further increase in resolution factor from 10 to 20 does not

reveal any gain in the MSE performance while it doubles the

computational complexity as demonstrated in Fig. 2b. From

Fig. 2a, it is clear that using the hypothesis intervals in S2
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Fig. 2. (a) Average MSE versus the number of carriers K. (b) Average execution time as a function of the number of carriers (log scale). The dash-dotted
red curves, dashed blue curves and solid green curves correspond to the hypothesis intervals in S1, S2 and S3, respectively. Only 8 pilots are used to form
the composite error E. All 12 receivers are used to perform DMRC (7).

we achieve the same MSE performance as we do using the

intervals in S1; however, using the intervals in S2 we reduce

the computational cost of the algorithm by a factor of 4 as

shown in Fig. 2b. The hypothesis intervals in S3, which have

the same range as those in S2 but with finer resolutions, result

in similar MSE performance as those in S2, but at the same

cost as those in S1. In a nutshell, using the intervals in S2, we

obtain the best trade-off between performance and complexity.

Thus, the rest of our analysis considers only the intervals in

S2.

Fig. 2a also shows that increasing the number of carriers

from 64 to 1024 (from log2(K) = 6 to 10) significantly

improves the MSE performance (as well as bandwidth effi-

ciency) of the system since a larger number of carriers leads

to a higher frequency-domain coherence which is essential

for successful differentially-coherent data detection [1]. The

apparent deterioration in performance for the OFDM frames

with log2(K) = 11 can be explained by the increased block

duration that nudges the temporal coherence of the channel.

Fig. 3 illustrates the estimated cumulative density function

of the MSE per block. This result refers to K = 1024
carries and includes the 52 frames transmitted over 3.5 hours.

Using the hypothesis intervals with range [−0.5∆f, 0.5∆f ]
and resolution factors 5, 10 and 20, the system delivers

MSE below −12 dB for 61%, 84% and 87% of the OFDM

blocks, respectively. Fig. 4 illustrates the MSE performance

as a function of the number of receiving elements Mr which

are chosen among the 12 available elements. The receiving

elements are maximally equally-spaced.

In Fig. 5, we demonstrate the performance of the system

in terms of average bit error rate (BER) using regular low-

density parity check (LDPC) codes with various code rates

range from 0.1 to 1. The codeword length is N = 2K,

thus, each codeword constitutes an OFDM block. The column

weight of the M × N parity check matrix is wc = 3 for all

the code rates considered, and the row weight wr = wcN/M
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Fig. 3. Estimated CDF of the MSE for hypothesis intervals in S2. The CDFs
reflect all 52 transmission with K = 1024 carriers during MACE’10.

varies from 3.3 to 30 corresponding to code rates from 0.1 to

0.9 [5]. We use soft decision decoding that takes the likelihood

ratio for each code-bit as input. Decoding is performed based

on the probability propagation algorithm which can be seen

as an instance of the sum-product algorithm [6]. Using the

hypothesis interval [−0.5∆f, 0.5∆f ] with steps ∆f/10 and

code rate as high as 0.8, we achieve BER as low as 5×10−5.

Code rates below 0.8 result in low BER values that cannot be

measured with the existing data.

V. CONCLUSION

We considered differentially coherent detection of acoustic

OFDM signals and targeted the frequency offset through a

hypothesis testing approach. This simple search technique can

be used as a stand-alone approach for differentially coherent

detection, but it can also be used as a pre-processing stage
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Fig. 5. Average BER versus the rate of the LDPC code. The results reflect
all 52 transmissions with 1024 carriers during MACE’10. The proposed
frequency synchronization method enables excellent performance with BER
= 5× 10−5 using code rates as high as 0.8.

for coherent detection. Its key feature is that only a few

pilots suffice to determine the frequency shift, and once the

frequency offset has been compensated, data symbols can be

detected either in a coherent or in a differentially coherent

manner.

We presented a comprehensive performance analysis using

experimental signals recorded over a mobile acoustic channel.

Our results show that the proposed method delivers an average

MSE below −12 dB for 84% of OFDM blocks and enables

a very high rate LDPC code to achieve an excellent BER of

5× 10−5 at very low computational complexity.
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